Friday, November 19, 2010

Identifying special situations in factoring

  • Difference of two squares
    • a2- b= (a + b)(a - b)
      • (x + 9)(x − 9)
      • (6x − 1)(6x + 1)
      • (x3 − 8)(x3 + 8)
  • Trinomial perfect squares
    • a+ 2ab + b2= (a + b)(a + b) or (a + b)2
      • x²-4x+4
      • 16x2 - 8xy + y2 = (4x - y)2
      • x²+6x+9
    • a- 2ab + b= (a - b)(a - b) or (a - b)2
  • Difference of two cubes
    • a3 - b3
      • 3 - cube root 'em
      • 2 - square 'em
      • 1 - multiply and change
        • int_alg_tut29pst2.gif


          Sum of two cubes
    • a3 + b3 
      • 3 - cube root 'em
      • 2 - square 'em
      • 1 - multiply and change
        • int_alg_tut29pst1.gif
  • Binomial expansion
  •  4c95ab2c-281b-4fcf-a88d-2bdb4ecfc7c9.gif

Tuesday, November 9, 2010

End Behaviors/Naming Polynomials

Linear Equations: 
y= mx+b 
1 degree
0 turns 

Domain - x values
Range - y values referred to as f(x)


When m is Positive: 
domain → +∞, range → +∞ (rises on the right)
domain → -∞, range → -∞ (falls on the left)












When m is Negative 
domain → -∞, range → +∞ (rises on the left)
domain → +∞, range → -∞ (falls on the right)












Quadratic Equations (parabolic equation)
y=ax² 
2 degree 
1 turn
(a+b)(c+d)
            
When a is Positive 










When a is Negative 











Naming Polynomials: 
--Number of turns is always 1 less than the degree. 

Degree:

0- Constant 
1- Linear
2- Quadratic 
3- Cubic
4- Quartic
5- Quintic 
6 to ∞- nth Degree 

Terms:

Monomial 
Binomial 
Trinomial 
Quadrinomial 
Polynomial 



domain → +∞, range → -∞ (falls on the right)
domain → -∞, range → -∞ (falls on the left)

domain → +∞, range → +∞ (rises on the right)
domain → -∞, range → -∞ (falls on the left)